
TEORÍA DE REDES DE TELECOMUNICACIONES

Grado en Ingeniería Telemática

Grado en Ingeniería en Sistemas de Telecomunicación

Curso 2015-2016

Lab work #2. Introduction to Net2Plan
algorithms development

(1 session)

Author:

Pablo Pavón Mariño

1 Objectives

The goals of this lab work are:

1. Introduce the concept of Net2Plan algorithm, and how to run them in Net2Plan.

2. Introduce the development of new o�ine design algorithms for Net2Plan.

2 Duration

This lab work is designed for one session of two hours.

3 Evaluation

This lab work has been designed to guide the students in their learning of Net2Plan. The annotations
the students make in this document are for their use when studying the course, and do not have to be
delivered to the teacher for evaluation.

4 Documentation

The resources needed for this lab work are:

• Net2Plan tool and their documentation (see http://www.net2plan.com/).

• Instructions in this wording.

5 Previous work before coming to the lab

• Read Chapter 5 of the users manual.

• Read the Javadoc information of:

� Interface IAlgorithm

� Classes NetPlan, Node, Link, Demand, Route.

All of them are in the package com.net2plan.interfaces.networkDesign.

6 Setup Eclipse for developing Net2Plan algorithms

The student can use any IDE (Integrated Developer Environment) for programming in Java at home.
However, the computers in the lab have Eclipse installed, and this section will brie�y guide the student
in how to setup Eclipse to develop Net2Plan algorithms with it. These explanations correspond to
Eclipse Mars 1 Release 4.5.1. Other Eclipse versions may have slightly di�erent menu and option
names.

The steps to follow are:

1

1. Open Eclipse.

2. Create a Eclipse Java project : Create a new Java project in menu File → New → Java project.
As an execution environment, use Java 7 or above. Write down the location of the project, since
it is where the Java and class �les are placed: we will need this information later.

3. Add the Net2Plan libraries to the project : To be able to write Net2Plan algorithms and build
them (compile them), the created Eclipse project needs to know where the Net2Plan libraries
are. This can be done in di�erent forms. For instance, right-click in the project name, and
then use the option Build path... → Con�gure Build Path. Then, in the tab Libraries, click the
button Add External JARs.... Navigate through the folders and go to lib folder in your Net2Plan
installation1. Then, add to the build path all the .jar �les there.

4. Install the solvers: In future lab sessions (not in this), you will need access to the GLPK and
IPOPT solvers. Unfortunately, we still could not make IPOPT run in Linux, and we will need
to use Windows in the lab. To install these solvers just:

• Check if the Java virtual machine you are using in your computer is of 32 or 64 bits. You
can do this with the command java -version in a console.

• Download the GLPK and IPOPT dll �les for the 32 or 64 bits version, the one of your
Java virtual machine, as shown in:

http://net2plan.com/jom/installation.php

• Copy them in any directory. Placing it in Windows/System32 folder, makes it immediately
accessible to Net2Plan. Other option is placing it in the same folder where Net2Plan.jar

is. Then, in the menu File → Options, set the glpkSolverLibraryName and ipoptSolverLi-
braryName parameters accordingly.

6.1 Open the documentation for developing

It is of the greatest importance that students get used to program Net2Plan in Java, making a smart
use of the documentation available. Then, before starting any development, the students should:

1. Open the Net2Plan users guide (pressing F1 from Net2Plan).

2. Open the local version of Net2Plan Javadoc, describing the Net2Plan libraries. Do this from the
menu Help → Library API Javadoc.

3. Open the local version of standard Java Javadoc, describing the Java lirbaries. It is accessible
from the installed browser bookmarks.

It is important that the students get familiar with using this documentation while programming,
and keep them always open in separate browsers. This documentation will be the only available
resource during the lab exams.

7 Create your �rst Net2Plan algorithm

In this course, all the o�ine Net2Plan algorithms developed will start adding/modifying code to a
simple template provided: AlgorithmTemplate.java.

Add this �le to the project as follows:

1If we install Net2Plan so that the Net2Plan.jar �le is in Net2Plan-0.4.0, then the lib folder is in Net2Plan-0.4.0/lib

2

1. Copy it to the src folder inside your Eclipse project folder. Then, press F5 or update the Eclipse
project, to make Eclipse automatically incorporate the �le to it. Alternatively, you can drag-
and-drop the �le to the src folder of the Eclipse project. Then, Eclipse will ask whether you
want to copy the �le or link it. Choose copy.

2. Open the AlgorithmTemplate.java �le in Eclipse. Change the package declaration to the pack-
age where you have copied it.

3. Build your project. It should have no errors, and produce a .class �le. This �le is available in
the bin folder, next to src folder of the Eclipse project.

4. To run your o�ine algorithm in Net2Plan you can: (i) drag-and-drop it to the Algorithm execution
tab, or (ii) load the class �le in the bin directory using the Load button.

The template algorithm does nothing but printing an �Ok� message in the screen.

7.1 Modify the algorithm

1. What is the algorithm description shown in Net2Plan? Identify this text in the Java �le. What
function of the �le returns the description to print?

Change the algorithm description, and build again the �le. To update the description in the
GUI, you have to reload it.

2. Look at the algorithm parameters in Net2Plan. Identify the part of the Java �le where this
information is set. Add a new parameter called newIntegerParam, with a default value of �7�, and
a description �I am new�. Write the code that reads in the algorithm the value of newIntegerParam
passed, parses it as an integer and stores it in the integer variable newIntegerParam.

3. Modify the algorithm so that it prints in the System.out, the current values of the parameters
passed. How can we see the messages that the algorithms print in System.out?

Call the algorithm with di�erent values for the input parameters. See how these values are shown
in the Java console.

8 Second algorithm

Starting from the �le AlgorithmTemplate.java, the students will create a more complex Net2Plan
algorithm, which now creates a topology of links and nodes, with demands and routes.

For this, please �rst copy the AlgorithmTemplate.java template to the project. Then, rename it
to MyFirstAlgorithm.java.

3

Recall that in Java the �le name should be equal to the class name. You can
rename the �le in Eclipse by clicking in its name, and then pressing F2. Eclipse
will rename both the �le and the class name, constructors etc. inside the Java
�le.

The student should complete the following steps:

• The algorithm must have one and only input parameter called linkCapacity, with a default value
of 1.0, and a description �This is the capacity to place in all the links�.

• The algorithm should �rst remove all the existing nodes in the input design.

Use the removeAllNodes function in NetPlan object (see the Javadoc!!!).

• The algorithm should create three nodes, placed at the positions (0,0), (10,0), (5,5). Use the
node names nodeA, nodeB and nodeC. The nodes will have no attributes.

Use the addNode function in NetPlan object (see the Javadoc!!!).

• The algorithm should connect the nodes in a triangle, with two links in opposite directions (this
means a total of six links). Set all the link lengths equal to 10 units, and a propagation speed
of 200000 km per second. The link capacity is made equal to the value of the input parameter
linkCapacity.

Use the addLink function in NetPlan object (see the Javadoc!!!). In this and
in ALL the functions in this course, never use the optional parameters of the type
NetworkLayer. They are applicable only in multilayer designs, and in this course
all the designs are single-layer.

Develop, compile and run the algorithm. It should produce a design as the one shown in Fig. 1.

• Print in the Java console the index and identi�er (Id) of all the created links.

Use the getIndex and getId methods of the returned Link objects.

Note that the indexes all start in zero and are consecutive, while the identi�ers are more arbitrary
serial numbers.

• Add one tra�c demand starting in nodeA and ending in nodeB, with 5 tra�c units.

Use the addDemand function in NetPlan object (see the Javadoc!!!).

Run the algorithm and check that the demand is created. Note that the tra�c is not carried.

• Set the tra�c routing type to SOURCE ROUTING, specifying that the tra�c will be carried
using Route objects (instead of forwarding rules).

Use the setRoutingType function in NetPlan object (see the Javadoc!!!).

• Add a route to the design, associated to the demand that was just created. The route should
carry 2 units of tra�c, occupying 2 units of capacity in each link traversed. The path is composed
of just the direct link between the nodes.

Use the addRoute function in NetPlan object (see the Javadoc!!!).

4

Figure 1: Network.

Run the algorithm and check that the route is created. Note that since the demand o�ers 5 units,
and only 2 are carried yet, there is still a blocking of 60%.

• Add a second route to the design, associated to the same demand. The route should carry 3
units of tra�c, occupying 3 units of capacity in each link traversed. The path is composed of
the two links nodeA → nodeC → nodeB. Run the algorithm and check that the route is created.
Note that the demand is now fully carried (0% blocking).

9 Now on your own

Quiz 1. Modify the previous algorithm to print in the Java console all the network nodes, with its
index and its name. For this, use two forms:

• Using the getNodes method in NetPlan object in a for loop like:

1 f o r (Node n : netPlan . getNodes ())

• Taking the nodes from the indexes, in a for loop like:

1 f o r (i n t indexN = 0 ; indexN < netPlan . getNumberOfNodes () ; indexN
++)

2 {
3 Node n = netPlan . getNode (indexN) ;
4 . . .
5 }

Quiz 2. Create an algorithm that receives an input design, removes all the links in it, and adds one
link between each node pair. All the links will have the same capacity, given by the input parameter
of the algorithm linkCapacity.

For removing the links, use the removeAllLinks function in NetPlan object
(see the Javadoc!!!).

Quiz 3. Create an algorithm that receives an input design, and the index of a node as an input
parameter (hubIndex parameter, with default value 0). Then, it will remove all the links in the input
design, but those starting or ending in the hubIndex node.

For removing the links, use the remove function in Link object (see the
Javadoc!!!).

5

Quiz 4. Create an algorithm that receives an input design, removes all the nodes in it, and then
creates a number of nodes given by the input parameter numNodes (defaults to 10). The X and the Y
positions of each node are chosen randomly using a uniform distribution between 0 and 10.

See the java.util.Random class in the Java release (see the Javadoc!!!).

10 Work at home after the lab work

The student is encouraged to complete all the Quizs that he/she could not �nish during the lab session.

6

